Package-level declarations

Miscellaneous utilities

Types

Link copied to clipboard
class CircularGVF(val center: Vector2d, val radius: Double, val kN: Double, val errorMapFunc: (Double) -> Double = { it }) : GuidingVectorField
Link copied to clipboard
class CompositeGVF(val pathGVF: PathGVF, val obstacles: Iterable<GVFObstacle>, val correctionRadius: Double = 5.0) : FollowableGVF

A composite guiding vector field that avoids obstacles and follows pathGVF.

Link copied to clipboard
data class DoubleProgression(val start: Double, val step: Double, val size: Int) : Iterable<Double>

A progression of values of type Double.

Link copied to clipboard
Link copied to clipboard

Guiding vector field for effective path following described in section III, eq. (9) of 1610.04391.pdf. Implementation note: the function phi (see eq. (2)) and its properties are split up into Phi.target and Phi.tangent.

Link copied to clipboard
class GVFObstacle(val gvf: GuidingVectorField, val insetDistance: Double, val zeroInMapFunc: (Double) -> Double = { defaultMapFunction(it) }, val zeroOutMapFunc: (Double) -> Double = { defaultMapFunction(it) })

An obstacle vector field (\(\mathcal{X}_{\mathcal{R}_i}\) eq. 4) as described in this paper.

Link copied to clipboard
class Matrix3x3(a: Double, b: Double, c: Double, d: Double, e: Double, f: Double, g: Double, h: Double, i: Double)
Link copied to clipboard
interface NanoClock

Clock interface with nanosecond precision and no guarantee about its origin (that is, this is only suited for measuring relative/elapsed time).

Link copied to clipboard
class PathGVF(val path: Path, val kN: Double, val errorMapFunc: (Double) -> Double = { it }) : GuidingVectorField, FollowableGVF

An implementation of GuidingVectorField that follows the specified path.

Link copied to clipboard
class PositionPathGVF(val path: PositionPath, val kN: Double, val errorMapFunc: (Double) -> Double = { it }) : GuidingVectorField
Link copied to clipboard
interface VectorField

Properties

Link copied to clipboard

Creates an Angle from the specified value in degrees.

Link copied to clipboard
const val EPSILON: Double = 1.0E-6

The accuracy with which epsilonEquals operates : 0.000001.

Link copied to clipboard

Creates an Angle from the specified value in radians.

Functions

Link copied to clipboard
fun abs(angle: Angle): Angle
Link copied to clipboard
fun clamp(n: Double, min: Double, max: Double): Double

Ensures that n lies in the range min..max.

Link copied to clipboard
fun cos(angle: Angle): Double
Link copied to clipboard

Does a linear regression of the form y = mx + b.

Link copied to clipboard

Does a linear regression of the form y = mx.

Link copied to clipboard
infix fun Double.epsilonEquals(other: Double): Boolean

Returns whether two doubles are approximately equal (within EPSILON).

Link copied to clipboard

Evaluates polynomial at x.

Link copied to clipboard

Generates n rows of Pascal's triangle.

Link copied to clipboard
fun isolateRoots(polynomial: DoubleArray, pascalsTriangle: Array<IntArray> = generatePascalsTriangle(polynomial.size)): List<ClosedFloatingPointRange<Double>>

Returns a list of intervals that each contain a root of polynomial that lies in 0, 1. Uses the Modified Uspensky algorithm described here.

Link copied to clipboard
fun max(a: Angle, b: Angle): Angle
Link copied to clipboard
fun min(a: Angle, b: Angle): Angle
Link copied to clipboard
operator fun Double.minus(progression: DoubleProgression): DoubleProgression
Link copied to clipboard
operator fun Double.plus(progression: DoubleProgression): DoubleProgression
Link copied to clipboard
fun sign(angle: Angle): Double
Link copied to clipboard
fun sin(angle: Angle): Double
Link copied to clipboard

Returns the real solutions to the quadratic \(ax^2 + bx + c\).

Link copied to clipboard
fun tan(angle: Angle): Double
Link copied to clipboard
operator fun Double.times(angle: Angle): Angle

Multiplies angle by the provided scalar.

operator fun Double.times(pose: Pose2d): Pose2d

Multiplies pose by the provided scalar.

operator fun Double.times(vector: Vector2d): Vector2d

Multiplies vector by the provided scalar.

Link copied to clipboard
fun wrap(n: Double, min: Double, max: Double): Double
fun wrap(n: Int, min: Int, max: Int): Int

Ensures that n lies in the range min..max, where min and max are modularly-equivalent (that is, n wraps around).

Link copied to clipboard
@JvmName(name = "wrap1")
fun Double.wrap(bounds: Pair<Double, Double>): Double
@JvmName(name = "wrap1")
fun Double.wrap(min: Double, max: Double): Double
@JvmName(name = "wrap1")
fun Int.wrap(min: Int, max: Int): Int